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Abstract 
While the usage of powerful mathematics software packages plays a key role in mathematics courses 

such as calculus, linear algebra, etc., shortcomings in these software packages exist – namely, issues 

of price, portability, and integration into a dynamic classroom technological environment. With these 

limitations in mind, this research expounds upon the mentally stimulating “Zombie Population 

Models” first developed by Munz, Hudea, Imad, and Smith[8]. Specifically, we modify these models 

to be visualized online via Sage, an open-source mathematics software based in the Python 

programming language, that allows for direct user interaction.  Sage is very portable and does not 

require the user to download large software packages or learn extremely confined programming 

languages. We then focus on viewing mathematically “realistic” population trajectories for the 

different classes of zombies from Left 4 Dead, Valve Corporation’s immensely popular zombie video 

game series. All outcomes are numerically (and visually!) realized with online Sage tools, constructed 

using the @intreract command in Sage, and are available for viewing, manipulation, and use in a 

mobile environment at http://matrix.skku.ac.kr/2014-Zombie-Model/main.htm. 

 

1. Introduction   
The outbreak and spread of virulent diseases, such as malaria, measles, smallpox, etc., is a subject 

that has remained a subject of interest in the academic community.  By creating mathematical models 

of an epidemic, scientists can identify trends and patterns inherent in the spread of the disease and, 

accordingly, implement isolation or vaccination plans to stop its transmission.  As well, mathematical 

models of infections (part of the larger study of the distribution and effects of epidemics called 

epidemiology) can also provide clues to the cause of the disease and lead  to eradication from the 

source. Various epidemic models including SIR, SIS, SIRS, SEIS, SEIR, etc. have been studied for 

many years. For more detailed information, see [2]. 
 

The reanimated dead (i.e. “zombies”) have a strong story-telling basis throughout history and have 

fascinated cultures across the world for centuries. In this paper, we will briefly examine basic models 

for zombie infection introduced by Munz, Hudea, Imad, and Smith [8], expanding upon the well-
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known SIR epidemiological model
2
. Specifically, we modify these models to be visualized in order 

to allow for direct user interaction and easy viewing of “realistic” population trajectories for the 

different classes of zombies from Left 4 Dead
3
, Valve Corporation’s video game series that revolves 

around players surviving a pandemic of aggressive zombie-ism. 

 

 

Figure 1: Left 4 Dead, a cooperative zombie video game, and similar video game titles 

 

Sage, System for Algebra and Geometry Experimentation, was developed by William Stein with 

a development group at the University of Washington and mathematicians from around the world 

[5,12]. It was developed for the express purpose of doing mathematical computations without 

having to purchase, download, install, and learn the complex code confined to other gargantuan 

computer algebra system (CAS). Sage has been released on its website: http://www.sagemath.org. 

Furthermore, Sage has a client-server model which is well-adapted to the internet and allows for 

easy embedding and programming of Sage commands (called Sage cells) into any website [6]. 

 

In light of this, we have developed Sage interactive visualization modules for “Zombie 

population” models. In particular, these Zombie models introduce different classes, subtypes, and 

dynamics into the standard population model. The construction of interactive models via Sage, 

which have been uploaded both to our Sage server and hosted privately, is a significant tool in 

understanding both the mathematics of population modeling and how small changes in initial 

parameters – initial population, infection rate, encounter rate, etc. - can result in vastly dissimilar 

dynamics later.  We seek to provide a comprehensive look at using Sage and interactive commands 

to create web tools that suit the user's mathematical needs. 

 

2. The Basic Zombie Population Modelling 
The model we will be analyzing and modifying is the basic zombie model (‘SZR’ model) of Munz,  

Hudea, Imad, and Smith [8]. This model was first developed by David Joyner and is detailed in his 

lecture notes titled “Love, War, and Zombies – Systems of Differential Equations using Sage”[9].  

(For consistency purposes, we will use the same variable names as Joyner in order to avoid 

confusion and for overall ease of comprehension.) This model is extremely well-known in the 

epidemiology community, so we will provide only a cursory explanation of the variables and 

equations used.  For the complete analysis, refer to [8]. This simple model considers the following 

three classes, Susceptible (S), Zombie (Z), and Removed (R). They are governed by their 

corresponding system of differential equations: 

                                                 
2
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(1)    𝑆′ = 𝛱 − 𝛽𝑆𝑍 − 𝛿𝑆 

(2)    𝑍′ = 𝛽𝑆𝑍 + 𝜁𝑅 − 𝛼𝑆𝑍 

(3)    𝑅′ = 𝛿𝑆 + 𝛼𝑆𝑍 − 𝜁𝑅 

Solutions to the above model are numerically approximated within Sage using the 

desolve_system_rk4 function
4
, which numerically solves the initial value problem for a system 

of first order equations and returns a list of points (that are then plotted in a easy-to-view graph) 

using the 4th order Runge-Kutta method. And we have adapted the model to an interactive 

framework where students can access the mode and manipulate variables without any prior 

programming knowledge or the need to install supplementary software.  The base for the code, 

developed within Sage, is provided here: 

 

@interact 

def zombies(s1= slider(1,50,1,20,label='initial amount of humans'), 

            z1 = slider(1,50,1,5,label='initial amount of zombies'), 

            r1 = slider(1,50,1,5, label='initial amount of removed (infected) humans'), 

            a = slider(0,1,0.001,0.005,label='humans kill zombies rate'), 

            b = slider(0,1,0.001,0.004,label='zombies kill human rate'), 

            zeta = slider(0,1,0.001,0.009,label='resurrection rate'), 

            d = slider(0,1,0.001,0.002,label='death rate of humans (from natural causes)'), 

            timelim = slider(1,80,1,30,label='maximum time')): 

    x,y,t,s,z,r=var('x,y,t,s,z,r') 

    B=0.0 

    P=desolve_system_rk4([B-b*s*z-d*s,b*s*z-zeta*r-a*s*z,d*s+a*s*z-zeta*r],[s,z,r], 

                         ics=[0,s1,z1,r1] ,ivar=t,end_points=timelim) 

    Ps = list_plot([[t,s] for t,s,z,r in P],plotjoined=True) 

    Pz = list_plot([[t,z] for t,s,z,r in P],plotjoined=True,rgbcolor='red') 

    Pr = list_plot([[t,r] for t,s,z,r in P],plotjoined=True,rgbcolor='black') 

    show(Ps+Pz+Pr) 

Table 1: Sage code (web address 5) 

We shall provide an overview for the construction of this interactive Sage cell: first, the entire 

display tool is defined as a function (here called zombies) that takes in eight distinct parameters.   

Unlike more primitive data types as arguments for a function, since this is an interactive model, the 

arguments are labeled “sliders” that can take on a range of values as defined by the user. The very 

first line -  @interact – wraps the function zombie is what truly transforms it into an interactive 

cell, allowing for those with only a cursory understanding of Python or other programming 

languages to edit, comprehend the code, and plot solutions.  For example, instead of a static value 

for a, the “humans killing zombie rate, the users (not the programmer) can define the value with an 

easy-to-use sliding tool that ranges from 0 to 1.  This makes the model not only easier to alter as a 

student, but also makes the resulting changes more intuitive and does not rely on the user needing 

an extensive knowledge of programming.  Then, using the desolve_system_rk4 function, the 

                                                 
4
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http://doc.sagemath.org/html/en/reference/calculus/sage/calculus/desolvers.html


The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823 

  

 

114 

 

system of differential equations is solved numerically.  Finally, all trajectories are plotted for each 

population in question, labels are provided for ease of reading, and one graph containing all 

trajectories is shown to the user. 

 

And a sample of the developed Sage code, all parameters that can be altered directly by the user, 

and the resulting trajectories are provided below
5
. 

 
Figure 2: Basic Zombie model 

While the 4th order Runge-Kutta method is not the only method for solving this system, it is the 

method that has the most literature associated with it; especially for the specific topic of zombie 

population modeling with Sage, desolve_system_rk4 is used almost solely. However, for those 

seeking a more mathematically rigorous method, readers can refer to the “dopri5” set integrator 

method in scipy.integrate.ode [11], implemented in SciPy (also callable within Sage), which uses 

the adaptive Dormand-Prince model [4] allowing for step-size control. As might be evident by the 

topic contents (zombies), for the purposes of this paper, we choose to focus less on mathematical 

robustness as much as simplicity for students, establishment of desolve_system_rk4 in previous 

literature, and ease of viewing in a mobile/web platform. The subject matter (Zombie infection) is 

itself improbable, so exact accuracy and the Dormand-Prince adaptive step size method, while 

undoubtedly providing more "realistic" trajectories, was not deemed necessary for our purposes 

(which are mostly educational). For more information on this specific implementation of 

desolve_system_rk4, readers are encouraged to consult [9]. 

 

3. Extensions of Zombie Population Modelling 
 

3.1 Quarantine Zombie model 

As an easy extension of the base zombie infection model, Munz et. al [8] provide equations for a 

“Quarantine” Zombie model.  This model resembles the situation above but with a new added class 

of infected humans that are removed from the general populace; specifically, infected humans 

(represented by a “Q” in the model) are removed and sent to private, quarantine areas, thereby 

ensuring they cannot infect new individuals and spread the disease.  The equations governing this 

scenario are: 

(4)  𝑆′ = 𝛱 − 𝛽𝑆𝑍 − 𝛿𝑆 

                                                 
5
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browsers.) 
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(5)  𝐼′ = 𝛽𝑆𝑍 − 𝜌𝐼 − 𝛿𝐼 − 𝜅𝐼 

(6)  𝑍′ = 𝜌𝐼 + 𝜁𝑅 − 𝛼𝑆𝑍 − 𝜎𝑍 

(7)  𝑅′ = 𝛿𝑆 + 𝛿𝐼 − 𝛼𝑆𝑍 − 𝜁𝑅 + 𝛾𝑄 

(8)  𝑄′ = 𝜅𝐼 + 𝛼𝑍 − 𝛾𝑄 

 

We, naturally, adapted the equations to Sage in a similar vein as above. The Sage code and an 

example of “possible” trajectory, as well as a more in-depth discussion of the model, are given 

below and on our mobile site
6
. 

 

@interact 

def zombies(human_initial= slider(1,50,1,20,label='initial amount of humans'),  

            zombies_initial = slider(1,50,1,5,label='initial amount of zombies'),  

            a = slider(0,1,0.001,0.005,label='human reproduction rate'),  

            beta1 = slider(0,1,0.001,0.004,label='infection rate'),  

            rho1 = slider(0,1,0.001,0.009,label='infect to zombie rate'), 

            delta1 = slider(0,1,0.001,0.002,label='death rate (from natural causes)'),  

            kappa1 = slider(0,1,0.001,0.002,label='infected human --> quarantine rate'), 

            zeta1= slider(0,1,0.001,0.002,label='dead people --> reanimate as zombie rate'),  

            alpha1=slider(0,1,0.001,0.002,label='zombies attack humans --> zombies die rate'),  

            sigma1=slider(0,1,0.001,0.002, label='zombie quarantine rate'), 

            gamma1 =slider(0,1,0.001, 0.002, label='escape rate of quarantined individuals (all killed)'), 

            timelim = slider(1,80,1,30,label='maximum time')): 

 

    x,y,t=var('x y t')  

    B=0 

    t,s,z,r,j,q = var("t,s,z,r,j,q") 

    B=0.0 

    P = desolve_system_rk4([(a*s)-(beta1*s*z)-(delta1*s), 

                            (beta1*s*z)-(rho1*j)-(delta1*j)-(kappa1*j), 

                            (rho1*j)+(zeta1*r)-(alpha1*s*z)-(sigma1*z), 

                            (delta1*s)+(delta1*j)+(alpha1*s*z)-(zeta1*r)+(gamma1*q), 

                            (kappa1*j)+(sigma1*z)-(gamma1*q)],[s,j,z,r,q], 

                           ics=[0,human_initial,0,zombies_initial,0,0], 

                           ivar=t,end_points=timelim) 

    #Pquar=desolve_system_rk4([B-b*s*z-rho*j-d*j-kappa*j, kappa*j+a*z-gammadie*q], 

    #[s,z,j,q], ics=[0,10,10,5,5], ivar=t, end_points=timelim) 

     

    Ps = list_plot([[t,s] for t,s,j,z,r,q in P], plotjoined=True, legend_label='People (yay!)') 

    Pz = list_plot([[t,z] for t,s,j,z,r,q in P], plotjoined=True, rgbcolor='red',  

                   legend_label='Zombies (grrr!)') 

    Pr = list_plot([[t,r] for t,s,j,z,r,q in P], plotjoined=True, rgbcolor='black',  

                   legend_label='Removed') 

    Pj = list_plot([[t,j] for t,s,j,z,r,q in P], plotjoined=True, rgbcolor='green', 

                   legend_label=' Latent Infected') 

    Pq = list_plot([[t,q] for t,s,j,z,r,q in P], plotjoined=True, rgbcolor='purple',  

                   legend_label='Quarantined') 

show(Ps+Pz+Pr+Pj+Pq) 

Table 2: Sage code (web address 6) 

                                                 
6
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Figure 3:  Zombie model with Quarantine 

 

3.2 Adding the “Left 4 Dead” zombies to the model 

Unlike previous portrayals of the undead as roughly the same in physical appearance, 

aggressiveness, and attack capability across individuals, Left 4 Dead, a popular video game created 

by gaming powerhouse Valve Corporation, is unique in creating two distinct subfamilies of 

zombies: the Common Infected
7
 and Special Infected. The most common zombie group the player 

encounters is, as anticipated, the Common Infected. However, by some mysterious biological 

process, a small percentage of humans experience a more physiologically impressive transformation 

into Special Infected, with heightened strength, intelligence, and particular anatomical nuances. 

Approximate percentages of each infection strain are given below in a pie chart found on a poster 

during game-play: 

 

 
Figure 4: The ratios of the stands of Green Flu infections, in-game and reformatted for easy 

viewing8 

 

The Common Infected zombies are Left 4 Dead’s version the archetypal “zombie” that has 

remained a fixture in nearly all forms of popular media. While not as slow-moving and shambling 

as other depictions (such as George Romero’s Night of the Living Dead
9
 zombies), they are still 

comparatively weak, lack most higher-order motor control functions, and are "as easy to kill as any 

normal human is” ("Common Infected"). The power of the Common Infected lies in their ability to 

                                                 
7
 http://left4dead.wikia.com/wiki/Common_Infected 

8
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9
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attack in large, synchronized groups, known as “The Horde.” Ajraldi, Pittavino, and Venturino [1] 

provide a method for modeling herd behavior in two interacting species via a square root term- that 

is, since our population is spread over a two-dimensional domain, the density square root will 

account for the individuals lying along the edge of their respective region. Thus, replacing the 

general Z equation (1) with the more specialized Horde zombies, the equations governing our 

model become: 

 

(9)  𝑆′ = 𝛱 − 𝛽𝐻𝑆√𝐻 − 𝜔𝑆 

(10)  𝑅′ = 𝜔𝑆 + 𝛼𝐻𝑆√𝐻 − 𝜁𝐻𝑅 

(11)  𝐻′ = 𝛽𝐻𝑆√𝐻 + 𝜁𝐻𝑅 − 𝛼𝐻𝑆√𝐻 

 

3.3 “General” Dynamics: The Hunter and The Charger
10 

      

These two zombies, distinct in respective traits and powers, will be modeled from roughly the same 

differential equation; for ease of organization, they are grouped together by their mathematical, not 

anatomical, relatedness. The Hunter is a Special Infected notable for its increased speed, agility, and 

relative absence of conspicuous physical mutations. Their equation, hence, is merely a special case 

of the general Zombie class from the model in [1], and accounting for all respective rates: 

 

(12)  𝑁′ = 𝛽𝑁𝑆𝑁 + 𝜁𝑁𝑅 − 𝛼𝑁𝑆𝑁 

 

The Charger is a large Special Infected that also has increased speed abilities but uses them to 

instead charge at a group of Survivors, sending them flying through the air. Following the equation 

setup above, we have: 
 

(13)  𝐶′ = 𝛽𝐶𝑆𝑁 + 𝜁𝐶𝑅 − 𝛼𝐶𝑆𝑁 
 

3.4 “In Tandem” Dynamics: The Jockey and The Boomer
11 

The Jockey and the Boomer, denoted by J and B, respectively, display "in tandem" population 

dynamics - that is, the effectiveness of other zombies increases given their presence in the system. 

Specifically, the Boomer attacks the human players by vomiting on them. This vomit attracts the 

Common Infected (Horde, H) zombies, and hence the likelihood of successful Horde attacks is 

increased with the presence of Boomers. The related equations are: 

 

(14)  𝐵′ = 𝛽𝐵𝑆𝐵 + 𝜁𝐵𝑅 − 𝛼𝐵𝑆𝐵 

(15)   𝐽′ = 𝛽𝐽𝑆𝐽 + 𝜁𝐽𝑅 − 𝛼𝐽𝑆𝐽 

(16) 𝐻′ = 𝛽𝐻𝑆√𝐻(
𝐵

𝑆+1
) + 𝜁𝐻𝑅 − 𝛼𝐻𝑆√𝐻 

                                                 
10
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11
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3.5 “Survivor Presence Proportional” Dynamics: The Smoker, The Tank, and The Witch
12

 

The Smoker, the Tank, and the Witch, (M, K, and W, respectively) are characterized by varying 

success rates based on the number of human survivors present in the system and their interactions 

with these survivors.  Markedly stronger and more resistant than the aforementioned zombie 

classes, their corresponding equations are: 

 

(17)  𝐾′ − 𝛽𝐾𝑆𝐾 + 𝜁𝐾𝑅 − 𝛼𝐾𝑆𝐾(
𝑆

𝐾+1
) 

(18)  𝑀′ − 𝛽𝑀𝑆𝑀 + 𝜁𝑀𝑅 − 𝛼𝑀𝑆𝑀(
𝑆

𝑀+1
) 

(19)  𝑊′ = 𝛽𝑊𝑆𝑊(
1

1+𝜂𝑊
) + 𝜁𝑊𝑅 − 𝛼𝑊𝑆𝑊 

By visiting website http://matrix.skku.ac.kr/2014-Zombie-Model/main.htm, you can view the 

open-source Sage code and these mobile-tailored population trajectories in a convenient and 

interactive format. The following Sage code, while extensive, should be fairly easy to follow by the 

reader at this point.  All zombies are added continuously, and attack/defense rates were calculated 

by in-game values are mentioned above. 

 
@interact 

def zombies(human_initial= slider(1,300,1,50,label='initial amount of humans'), 

            zombies_initial_h = slider(1,50,1,5,label='initial amount of common infected zombies'), 

            zombies_initial_b = slider(1,50,1,2,label="initial amount of The Boomer"), 

            zombies_initial_m = slider(1,50,1,2,label='initial amount of The Smoker'), 

            zombies_initial_n=slider(1,50,1,2,label='initial amount of the Hunter'), 

            zombies_initial_k = slider(1,50,1,1,label='initial amount of the Tank'), 

            zombies_initial_w = slider(1,50,1,1,label='initial amount of the Witch'), 

            mm=slider(0,1,0.001,0.2, label='The Witch elusiveness rate'), 

            zombies_initial_c = slider(1,50,1,1,label='initial amount of the Charger'), 

            zombies_initial_j = slider(1,50,1,1,label='initial amount of the Jockey'), 

            a2 = slider(0,1,0.01,0.69,label='human birth rate'), 

            deathtimes= slider(0,1,0.001,0.005, label='human natural death rate'), 

            timelim = slider(0,400,10,60,label='maximum time')): 

     

    alpha_common = 0.09 

    alpha_boomer=0.09 

    alpha_smoker=0.083544 

    alpha_hunter=0.083544 

    alpha_tank=0.005 

    alpha_witch=.067404 

    alpha_charger=0.076012 

    alpha_jockey=0.08193 

 

    #infection rates from Removed population 

    zeta_common = 0.063 

    zeta_boomer = 0.006 

    zeta_smoker = 0.007 

    zeta_hunter = 0.009 

    zeta_tank = 0.003 

    zeta_witch = 0.004 

    zeta_charger = 0.004 

                                                 
12

 http://left4dead.wikia.com/wiki/The_Smoker     http://left4dead.wikia.com/wiki/The_Tank 

http://left4dead.wikia.com/wiki/Witch 

http://matrix.skku.ac.kr/2014-Zombie-Model/main.htm
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http://left4dead.wikia.com/wiki/Witch


The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823 

  

 

119 

 

    zeta_jockey = 0.004 

         

    #attack rates from damage done by primary attack 

    beta_common = 0.005 

    beta_witch=0.09 

    beta_boomer=.007157 

    beta_smoker=0.010897 

    beta_hunter=0.012335 

    beta_tank=0.046853 

    beta_charger=0.012335 

    beta_jockey=0.007157 

 

    t,s,h,b,m,r,n,k,w,j = var("t,s,h,b,m,r,n,k,w,j") 

    P = desolve_system_rk4([(a2)-(beta_common*s*sqrt(h)*(b/(s+1)))-(beta_boomer*s*b) 

                            -(beta_smoker*s*m*(1/((s^2)+1)))-(beta_hunter*s*n)-(beta_tank*s*k) 

                            -(beta_witch*s*w*(1/(1+mm*w)))-(beta_jockey*s*j)-(deathtimes*s), 

                            (beta_common*s*sqrt(h))+(zeta_common*r)-(alpha_common*s*sqrt(h)), 

                            (beta_boomer*s*b)+(zeta_boomer*r)-(alpha_boomer*b*s), 

                            (deathtimes*s)+(alpha_common*s*sqrt(h))+(alpha_boomer*s*b) 

                            +(alpha_smoker*s*m)+(alpha_hunter*s*n)+(alpha_tank*k*s*(s/(k+1))) 

                            +(alpha_witch*w*s)-(zeta_common*r)-(zeta_boomer*r)-(zeta_smoker*r) 

                            -(zeta_hunter*r)-(zeta_tank*r)-(zeta_witch*r)-(zeta_jockey*r), 

                            (beta_smoker*s*m)+(zeta_smoker*r)-(alpha_smoker*m*s), 

                            (beta_hunter*s*n)+(zeta_hunter*r)-(alpha_hunter*n*s), 

                            (beta_tank*s*k)+(zeta_tank*r)-(alpha_tank*k*s*(s/(k+1))), 

                            (beta_witch*s*w*(1/(1+mm*w)))+(zeta_witch*r)-(alpha_witch*w*s), 

                            (beta_jockey*s*j)+(zeta_jockey*r)-(alpha_jockey*j*s)],[s,h,b,r,m,n,k,w,j], 

     ics=[0,human_initial,zombies_initial_h, zombies_initial_b,0, 

          zombies_initial_m, zombies_initial_n, zombies_initial_k, zombies_initial_w, 

          zombies_initial_j],ivar=t,end_points=timelim) 

     

    #survivors 

    Ps = list_plot([[t,s] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True, 

                   legend_label='People (yay!)') 

    #common infected 

    Ph = list_plot([[t,h] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,rgbcolor='red', 

                   legend_label='Common Infected') 

    #the Boomer 

    Pb = list_plot([[t,b] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,rgbcolor='green', 

                   legend_label='The Boomer') 

    #the Smoker 

    Pm = list_plot([[t,m] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,rgbcolor='purple', 

                   legend_label='The Smoker') 

    #the Hunter 

    Pn = list_plot([[t,n] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,rgbcolor='orange', 

                   legend_label='The Hunter') 

    #the Tank 

    Pk = list_plot([[t,k] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,rgbcolor='black', 

                   legend_label='The Tank') 

    #the Witch 

    Pw = list_plot([[t,w] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,rgbcolor='pink', 

                   legend_label='The Witch') 

    #the Jockey 

    Pj = list_plot([[t,j] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,rgbcolor='yellow', 

                   legend_label='The Jockey') 

     

    show(Ps+Ph+Pb+Pm+Pw+Pj+Pn+Pk) 

Table 3: Sage code 
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Figure 5: The Zombie SZR model and its various links and applications 

These population trajectories, as well as in-depth zombie profiles, mathematical analyses, and 

other interesting “apocalyptic” math resources and fun tidbits, are available through our mobile-

adapted website above. 

 

4. Conclusions  
Through this research, we have introduced our easy-to-view Zombie Population Model as a 

pedagogical Sage Tool. Readers need resources that appeal to their extracurricular interests and 

bolster academic curiosity by showing mathematics in a way previously unexplored; namely, how 

mathematics relates to pop culture in the form of zombies and video games [3]. In general, 

educators are finding academically stimulating ways to incorporate mathematics learning into video 

games and vice versa.  Being able to connect a reader's extracurricular interests to an academic area 

he or she previously struggled in can not only increase interest in the subject as a whole, but 

encourage the student to preserve through difficult moments and, hence, find satisfaction in their 

work. Technological tools that can combine a reader’s independent interests with relevant 

mathematically-driven content have been shown to improve student learning in various areas [7].  

Bolstering interest in population models and differential equations can, in turn, bolster interest in all 

areas of mathematics [10]. Being able to present these tools in an easy-to-view, open-source, free 

format online furthers this goal and gives the power of mathematical manipulation directly to 

students of various math levels and disciplines. 
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